jueves, 4 de diciembre de 2008

Tipos de Procesadores Pentium (caracteristicas)

Y aquí un pequeño listado con sus caracteristicas de los procesadores Intel.
Estan ordenados desde los mas poderosos y caros a los de menor desempeño pero mas economicos.

Vamos a definir algunos conceptos:

Arquitectura: es la tecnologia aplicada al momento de crear el chip, entre mas pequeña menos consumo energetico y por lo tanto disipan menos calor.

C.L2: Cache secundario, los procesadores vienen con su propia memoria ram, para almacenar esos datos que se ocupan mas seguido, por lo que entre mas memoria cache, mejor rendimiento tendra el procesador.

Velocidad: Indica que tan rápido se “mueve” nuestro procesador. No debemos olvidar que hoy en día este parametro solo debe utilizarse como medio de comparacion en procesadores del mismo tipo (No es valido comparar velocidades entre procesadores core 2 Extreme y core 2 duo).

Bus: Indica que tan rapido se puede comunicar el procesador con otros dispositivos, este es un factor importante que determina que tipo de memoria ram puede tener nuestro computador. Como ya te habrás dado cuenta, entre mas rapido, mejor.

Zocalo: Tipo de conector que posee el procesador, si nuestra tarjeta madre no dispone del mismo conector, sera imposible instalar el procesador.

Vt: Para aquellas personas que desean tener en el mismo computador, una maquina con Windows Vista, Windows XP e incluso Linux.

Procesador Intel Core 2 Extreme (4 nucleos)

Numero Arquitectura C. L2 Velocidad Bus Zocalo Intel VT
Qx9775 45nm 12Mb 3,20Ghz 1600Mhz Si
Qx9770 45nm 12Mb 3,20Ghz 1600Mhz Loga775 Si
Qx9650 45nm 12Mb 3Ghz 1333Mhz Lga775 Si
Qx6850 65nm 8Mb 3Ghz 1333Mhz Lga775 Si
Qx6800 65nm 8Mb 2,93Ghz 1066Mhz Lga775 Si
Qx6700 65nm 8Mb 2,66Ghz 1066Mhz Lga775 Si
Qx6800 65nm 4M 2,93Ghz 1066Mhz Lga775 Si

Procesador Intel Core 2 Quad (4 nucleos)

Numero Arquitectura C. L2 Velocidad Bus Zocalo Intel VT
Q9650 45nm 12Mb 3Ghz 1333Mhz Lga775 Si
Q9400 45nm 6Mb 2,66Mhz 1333Mhz Lga775 Si
Q9550 45nm 12Mb 2,83Mhz 1333Mhz Lga775 Si
Q9450 45nm 6M 2,50Ghz 1333Mhz Lga775 Si
Q9300 45nm 6M 2,50Ghz 1066Mhz Lga775 Si
Q6700 65nm 8M 2,66Ghz 1066Mhz Lga775 Si
Q6600 65nm 8M 2,40Ghz 1066Mhz Lga775 Si

Procesador Intel Core 2 Duo (2 nucleos)

Numero Arquitectura C. L2 Velocidad Bus Zocalo Intel VT
E8600 45nm 6M 3,33Ghz 1333Mhz Lga775 Si
E7300 45nm 3M 2,66Ghz 1066Mhz Lga775 No
E8500 45nm 6M 3,16Ghz 1333Mhz Lga775 Si
E8400 45nm 6M 3Ghz 1333Mhz Lga775 Si
E8300 45nm 6M 2,83Ghz 1333Mhz Lga775 Si
E8200 45nm 6M 2,66Ghz 1333Mhz Lga775 Si
E8190 45nm 6M 2,66Ghz 1333Mhz Lga775 No
E7200 45nm 3M 2,53Ghz 1066Mhz Lga775 NO
E6850 65nm 4M 3Ghz 1333Mhz Lga775 Si
E6750 65nm 4M 2,66Ghz 1333Mhz Lga775 Si
E6700 65nm 4M 2,66Ghz 1066Mhz Lga775 Si
E6600 65nm 4M 2,40Ghz 1066Mhz Lga775 Si
E6550 65nm 4M 2,33Ghz 1333Mhz Lga775 Si
E6540 65nm 4M 2,33Ghz 1333Mhz Lga775 Si
E6420 65nm 4M 2,13Ghz 1066Mhz Lga775 Si
E6400 65nm 2M 2,13Ghz 1066Mhz Lga775 Si
E6320 65nm 4M 1,86Ghz 1066Mhz Lga775 Si
E6300 65nm 2M 1,86Ghz 1066Mhz Lga775 Si
E4700 65nm 2Mb 2,60Ghz 800Mhz Lga775 No
E4600 65nm 2Mb 2,40Ghz 800Mhz Lga775 No
E4500 65nm 2Mb 2,20Ghz 800Mhz Lga775 No
E4400 65nm 2Mb 2Ghz 800Mhz Lga775 No
E4300 65nm 2Mb 1,80Ghz 800Mhz Lga775 No

Procesador Intel Pentium Extreme Edition (2 nucleos)

Numero Arquitectura C. L2 Velocidad Bus Zocalo Intel VT
965 65nm 2×2Mb 3,73Ghz 1066Mhz Lga775 Si
955 65nm 2×2Mb 3,46Ghz 1066Mhz Lga775 Si
840 90nm 2×1Mb 3,20Ghz 800Mhz Lga775 Si

Procesador Intel Pentium dual-core (2 nucleos)

Numero Arquitectura C. L2 Velocidad Bus Zocalo Intel VT
E2220 65nm 1Mb 2,40Ghz 800Mhz Lga775 No
E2200 65nm 1Mb 2,20Ghz 800Mhz Lga775 No
E2180 65nm 1Mb 2Ghz 800Mhz Lga775 No
E2160 65nm 1Mb 1,80Ghz 800Mhz Lga775 No
E2140 65nm 1Mb 1,60Ghz 800Mhz Lga775 No

Procesador Intel Pentium D (Multi-core)

Numero Arquitectura C. L2 Velocidad Bus Zocalo Intel VT
E2140 65nm 1Mb 1,60Ghz 800Mhz Lga775 No
960 65nm 2×2Mb 3,60Ghz 800Mhz Lga775 Si
950 65nm 2×2Mb 3,40Ghz 800Mhz Lga775 Si
945 65nm 2×2Mb 3,40Ghz 800Mhz Lga775 No
940 65nm 2×2Mb 3,20Ghz 800Mhz Lga775 Si
935 65nm 2×2Mb 3,20Ghz 800Mhz Lga775 No
930 65nm 2×2Mb 3Ghz 800Mhz Lga775 Si
925 65nm 2×2Mb 3Ghz 800Mhz Lga775 No
920 65nm 2×2Mb 2,80Ghz 800Mhz Lga775 Si
915 65nm 2×2Mb 2,80Ghz 800Mhz Lga775 No
840 90nm 2×1Mb 3,20Ghz 800Mhz Lga775 No
930 65nm 2×2Mb 3Ghz 800Mhz Lga775 Si
925 65nm 2×2Mb 3Ghz 800Mhz Lga775 No
920 65nm 2×2Mb 2,80Ghz 800Mhz Lga775 Si
915 65nm 2×2Mb 2,80Ghz 800Mhz Lga775 No
840 90nm 2×1Mb 3,20Ghz 800Mhz Lga775 Si
830 90nm 2×1Mb 3Ghz 800Mhz Lga775 No
820 90nm 2×1Mb 2,80Ghz 800Mhz Lga775 No
805 90nm 2×1Mb 2,66Ghz 533Mhz Lga775 No

Tipos de Procesadores AMD

Duron: Socket A




1.-Admite un controlador memoria de doble canal, pero depende del chipset. Pero, debido al diseño de bus/reloj síncrono, será incapaz de aprovechar más del 50% del ancho de banda en dicha configuración.
2.-No puede ejecutar código de 64 bits.
3.-Se ofrece principalmente con 64Kbytes de caché L2.
4.-Versión más rápida: 1'80GHz.
5.-Del más viejo al más nuevo, los núcleos usados son: Spitfire, Morgan, Appaloosa, Applebred.
6.-Longevidad en el mercado: Prácticamente ninguna. Con el lanzamiento de la familia Sempron cabe esperar la desaparición total.
7.-Overclockability: algunos usuarios afirman haber conseguido velocidades de hasta 2'40GHz en procesadores Duron basados en el núcleo Applebred y con refrigeración por aire. Nadie parece haber probado refrigeración líquida.
8.-Mejor placa madre: probablemente la Abit NF7-S 2.0 es la mejor para procesadores Athlon XP.
9.-Capacidad SMP: teóricamente es posible, aunque serían necesarias modificaciones en el bridge.

Athlon XP: Socket A


1.-Admite un controlador memoria de doble canal, pero depende del chipset. Pero, debido al diseño de bus/reloj síncrono, será incapaz de aprovechar más del 50% del ancho de banda en dicha configuración.
2.-No puede ejecutar código de 64 bits.
3.-Se ofrece principalmente con 512Kbytes de caché L2, aunque versiones antiguas, como el Thoroughbred-B, venían con 256K.
4.-Versión más rápida: 3200+ (2'20GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Palomino, Thoroughbred A, Thoroughbred B, Barton, Thorton
6.-Longevidad en el mercado: unos 16 meses más. AMD dejará de suministrarlos en el segundo trimestre de 2005, y se espera que los stocks se vacíen a finales del mismo año. Sin embargo, es un procesador potente, fiable y capaz de mover muchos juegos actuales. Los sistemas asequibles deberían tener en mente a este procesador.
7.-Overclockability: con refrigeración por aire, hasta 2'40GHz. Con refrigeración líquida, hasta 2'70GHz.
8.-Mejor placa madre: probablemente la Abit NF7-S 2.0 es la mejor para procesadores Athlon XP.
9.-Capacidad SMP: teóricamente es posible, aunque serían necesarias modificaciones en el bridge.

Sempron: Socket A

user posted image
1.-Admite un controlador memoria de doble canal, pero depende del chipset. Pero, debido al diseño de bus/reloj síncrono, será incapaz de aprovechar más del 50% del ancho de banda en dicha configuración.
2.-No puede ejecutar código de 64 bits.
3.-Se ofrece principalmente con 256Kbytes de caché L2, aunque la versión 2200+ dispone de 512K y la versión 2400+ de 128K.
4.-Versión más rápida: 2800+ (2GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Thoroughbred B, Thorton.
6.-Longevidad en el mercado: acaban de salir para sustituir al Duron. Todavía queda por ver su capacidad de venta, pero los usuarios han informado de una buena compatibilidad con placas Socket A. Sin embargo, los planes de AMD no contemplan ninguna revisión de los núcleos.
7.-Overclockability: con refrigeración por aire, hasta 2'20GHz. Con refrigeración líquida, hasta 2'50GHz.
8.-Mejor placa madre: probablemente la Abit NF7-S 2.0 es la mejor. Una reciente actualización de la BIOS permite adaptarla al nuevo procesador fácilmente.
9.-Capacidad SMP: teóricamente es posible por estar basado en el núcleo Thoroughbred. Sin embargo, su encapsulado protege los puentes que permitirían cambiarlo.




Sempron: Socket 754

user posted image
1.-No permite usar memoria en configuración de doble canal. La arquitectura del Socket 754 mueve el controlador de memoria al interior del procesador, por lo que debe ser éste quien la soporte, y AMD no ha sacado ninguna versión que lo haga.
2.-No puede ejecutar código de 64 bits.
3.-Se ofrece únicamente con 256Kbytes de caché L2.
4.-Versión más rápida: 3100+ (1'8GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Paris.
6.-Longevidad en el mercado: acaban de salir para sustituir al Duron. Todavía queda por ver su capacidad de venta. Es difícil saber qué ocurrirá con el Socket 754, sobre todo si se tiene en cuenta que la estrategia de AMD pretende migrar hacia la plataforma 939. Sería caro para AMD y los fabricantes mantener las tres plataformas 754/939/940. Según los planes de mercado de AMD, recibirá una única revisión en el cambio a tecnología de 90nm. Esta revisión se denomina Palermo, y está programada para la primera mitad de 2005.
7.-Overclockability: no hay informes.
8.-Mejor placa madre: con seguridad, la DFI LanPartyUT NF3 250GB.
9.-Capacidad SMP: imposible.

Athlon 64: Socket 754


user posted image
1.-No permite usar memoria en configuración de doble canal. La arquitectura del Socket 754 mueve el controlador de memoria al interior del procesador, por lo que debe ser éste quien la soporte, y AMD no ha sacado ninguna versión que lo haga.
2.-El Athlon 64 para Socket 754 es capaz de trabajar en tres modos: 32 puro, 64 puro y 32/64 simultáneo. No hay penalización de rendimiento en ninguno de los tres modos.
3.-Se ofrece principalmente con 512Kbytes de caché L2, con la excepción de los procesadores OEM DTT 3400+ y 3700+, que incorporan 1MB de caché L2.
4.-Versión más rápida: 3700+ (2'4GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Clawhammer, Newcastle.
6.-Longevidad en el mercado: Difícil de predecir. Es difícil saber qué ocurrirá con el Socket 754, sobre todo si se tiene en cuenta que la estrategia de AMD pretende migrar hacia la plataforma 939. Sería caro para AMD y los fabricantes mantener las tres plataformas 754/939/940. Según los planes de mercado de AMD, la plataforma 754 migrará a Sempron, mientras que los Athlon 64 pasarán al núcleo Winchester, que es un producto exclusivo para Socket 939.
7.-Overclockability: algunos usuarios han conseguido elevar la velocidad hasta 2'60GHz.
8.-Mejor placa madre: con seguridad, la DFI LanPartyUT NF3 250GB.
9.-Capacidad SMP: imposible.

Athlon 64: Socket 939

user posted image
1.-PUEDE trabajar en configuración de memoria dual. El controlador integrado de todos los procesadores para Socket 939 permite trabajar en configuración single y dual channel.
2.-El Athlon 64 para Socket 939 es capaz de trabajar en tres modos: 32 puro, 64 puro y 32/64 simultáneo. No hay penalización de rendimiento en ninguno de los tres modos.
3.-Se ofrece principalmente con 512Kbytes de caché L2, con la excepción del 4000+, que incorporan 1MB de caché L2.
4.-Versión más rápida: 4000+ (2'4GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Clawhammer, Newcastle, Winchester.
6.-Longevidad en el mercado: muy grande. AMD ha creado esta CPU para cubrir un amplio segmento de su estrategia de mercado.
7.-Overclockability: con las nuevas versiones de 90nm con núcleo Winchester se han conseguido velocidades de 2'50GHz, la cual está por encima de la de 4000+ pero por debajo de la del Athlon FX-55.
8.-Mejor placa madre: probablemente la EPoX 9NDA3+, basada en el chipset nForce3 ULTRA. Sin embargo, hay que tener en cuenta las ofertas de Abit, EPoX, DFI y Asus que saldrán con el chipset nForce4, que aparecerán a finales de 2004 y que, probablemente, sean una mejor opción. La mejor sugerencia es esperar, si es posible.
9.-Capacidad SMP: imposible.


Athlon FX: Socket 939

user posted image
1.-Puede trabajar en configuración de memoria dual. El controlador integrado de todos los procesadores para Socket 939 permite trabajar en configuración single y dual channel.
2.-El Athlon FX para Socket 939 es capaz de trabajar en tres modos: 32 puro, 64 puro y 32/64 simultáneo. No hay penalización de rendimiento en ninguno de los tres modos.
3.-Se ofrece únicamente con 1MB de caché L2.
4.-Versión más rápida: FX-55 (2'6GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Sledgehammer. Para la primera mitad de 2005 se espera el nuevo núcleo San Diego, fabricado con tecnología de 90nm.
6.-Longevidad en el mercado: muy grande. AMD ha creado esta CPU para cubrir el segmento de la gente con mucho dinero para gastar, para aquellos que quieren el "más grande, mejor, más rápido, el más de lo más".
7.-Overclockability: este procesador, en las pruebas realizadas, nunca superó los 2'70GHz. Se espera, sin embargo, que la nueva versión (FX-57) trabaje a 2'8GHz.
8.-Mejor placa madre: probablemente la EPoX 9NDA3+, basada en el chipset nForce3 ULTRA. Sin embargo, hay que tener en cuenta las ofertas de Abit, EPoX, DFI y Asus que saldrán con el chipset nForce4, que aparecerán a finales de 2004 y que, probablemente, sean una mejor opción. La mejor sugerencia es esperar, si es posible.
9.-Capacidad SMP: imposible.

Opteron: Socket 940

user posted image
1.-Puede trabajar en configuración de memoria dual. El controlador integrado de todos los procesadores para Socket 940 permite trabajar en configuración single y dual channel.
2.-El Opteron 940 es capaz de trabajar en tres modos: 32 puro, 64 puro y 32/64 simultáneo. No hay penalización de rendimiento en ninguno de los tres modos.
3.-Se ofrece exclusivamente con 1MB de caché L2.
4.-Versión más rápida: Opteron 250 (2'4GHz).
5.-Del más viejo al más nuevo, los núcleos usados son: Sledgehammer. Pero para 2005 se esperan las siguientes versiones: Athens (sin SMP), Troy (1-2 CPUs) y Venus (1-8 CPUs).
6.-Longevidad en el mercado: muy grande. AMD ha creado esta CPU para cubrir el segmento de mercado de servidores. Con una arquitectura escalable capaz de admitir hasta 8 procesadores, se pueden conseguir rendimientos extremos con una relación rendimiento/precio extremadamente atractiva.
7.-Overclockability: con las nuevas versiones no se han conseguido velocidades superiores a 2'60GHz. La próxima revisión será el Opteron 252 a 2'60GHz, que es, probablemente, el límite actual para 130nm. Un cambio a 90nm, o posteriores revisiones, podrían permitir un Opteron 254.
8.-Mejor placa madre: probablemente la Tyan Thunder K8W (S2885), que ofrece:

-Hasta dos procesadores Opteron
-Ocho conectores DIMM de 184 pines y 2'5V para disponer de hasta 16GB de memoria.
-Cuatro slots PCI-X de 64 bits y un AGP 8x/AGP Pro110.
-Un controlador de GbE Lan y controlador integrado FireWire.
-Controlador Serial ATA y sistema de audio.
9.-Capacidades SMP: es la única CPU de 64 bits con capacidades SMP. Permite sistemas SMP de hasta 8 procesadores.

MICROPROCESADORES

MICROPROCESADORES
El microprocesador es un circuito integrado que contiene algunos o todos los elementos necesarios para conformar una (o más) "unidad central de procesamiento" UCP, también conocido como CPU (por sus siglas en inglés: Central Process Unit). En la actualidad este componente electrónico está compuesto por millones de transistores, integrados en una misma placa de silicio. Se debe distinguir entre el concepto de Procesador, que es un concepto de Hardware, con el concepto de CPU, que es un concepto lógico. Una CPU puede estar soportada por uno o varios microprocesadores, y un microprocesador puede soportar una o varias CPU. Han pasado más de 25 años desde que Intel diseñara el primer microprocesador, siendo la compañía pionera en el campo de la fabricación de estos productos, y que actualmente cuenta con más del 90 por ciento del mercado. Un tiempo en el que todo ha cambiado enormemente, y en el que desde aquel 4004 hasta el actual Pentium II hemos visto pasar varias generaciones de máquinas que nos han entretenido y nos han ayudado en el trabajo diario.
Dicen que es natural en el ser humano querer mirar constantemente hacia el futuro, buscando información de hacia dónde vamos, en lugar de en dónde hemos estado. Por ello, no podemos menos que asombrarnos de las previsiones que los científicos barajan para dentro de unos quince años. Según el Dr. Albert Yu, vicepresidente de Intel y responsable del desarrollo de los procesadores desde el año 1984, para el año 2011 utilizaremos procesadores cuyo reloj irá a una velocidad de 10 GHz (10.000 MHz), contendrán mil millones de transistores y será capaz de procesar cerca de 100 mil millones de instrucciones por segundo. Un futuro prometedor, que permitirá realizar tareas nunca antes pensadas.

HISTORIA Y EVOLUCION DE LOS MICROPROCESADORES Sin embargo, para que esto llegue, la historia de los procesadores ha pasado por diferentes situaciones, siguiendo la lógica evolución de este mundo. Desde aquel primer procesador 4004 del año 1971 hasta el actual Pentium II del presente año ha llovido mucho en el campo de los procesadores. Tanto, que no estamos seguros si las cifras que se barajan en Intel se pueden, incluso, quedar cortas. Aquel primer procesador 4004, presentado en el mercado el día 15 de noviembre de 1971, poseía unas características únicas para su tiempo.

Para empezar, la velocidad de reloj sobrepasaba por poco los 100 KHz (sí, habéis leído bien, kilohertzios), disponía de un ancho de bus de 4 bits y podía manejar un máximo de 640 bytes de memoria. Realmente una auténtica joya que para entonces podía realizar gran cantidad de tareas, pero que por desgracia no tiene punto de comparación con los actuales micros. Entre sus aplicaciones, podemos destacar su presencia en la calculadora Busicom, así como dotar de los primeros tintes de inteligencia a objetos inanimados.

Poco tiempo después, sin embargo, el 1 de abril de 1972, Intel anunciaba una versión mejorada de su procesador. Se trataba del 8008, que contaba como principal novedad con un bus de 8 bits, y la memoria direccionable se ampliaba a los 16 Kb. Además, llegaba a la cifra de los 3500 transistores, casi el doble que su predecesor, y se le puede considerar como el antecedente del procesador que serviría de corazón al primer ordenador personal. Justo dos años después, Intel anunciaba ese tan esperado primer ordenador personal, de nombre Altair, cuyo nombre proviene de un destino de la nave Enterprise en uno de los capítulos de la popular serie de televisión Star Trek la semana en la que se creó el ordenador. Este ordenador tenía un coste de entorno a los 400 dólares de la época, y el procesador suponía multiplicar por 10 el rendimiento del anterior, gracias a sus 2 MHz de velocidad (por primera vez se utiliza esta medida), con una memoria de 64 Kb. En unos meses, logró vender decenas de miles de unidades, en lo que suponía la aparición del primer ordenador que la gente podía comprar, y no ya simplemente utilizar. La introducción de IBM Sin embargo, como todos sabemos, el ordenador personal no pasó a ser tal hasta la aparición de IBM, el gigante azul, en el mercado. Algo que sucedió en dos ocasiones en los meses de junio de 1978 y de 1979. Fechas en las que respectivamente, hacían su aparición los microprocesadores 8086 y 8088, que pasaron a formar el denominado IBM PC, que vendió millones de unidades de ordenadores de sobremesa a lo largo y ancho del mundo. El éxito fue tal, que Intel fue nombrada por la revista "Fortune" como uno de los mejores negocios de los años setenta. De los dos procesadores, el más potente era el 8086, con un bus de 16 bits (por fin), velocidades de reloj de 5, 8 y 10 MHz, 29000 transistores usando la tecnología de 3 micras y hasta un máximo de 1 Mega de memoria direccionable. El rendimiento se había vuelto a multiplicar por 10 con respecto a su antecesor, lo que suponía un auténtico avance en lo que al mundo de la informática se refiere. En cuanto al procesador 8088, era exactamente igual a éste, salvo la diferencia de que poseía un bus de 8 bits en lugar de uno de 16, siendo más barato y obteniendo mejor respaldo en el mercado.

En el año 1982, concretamente el 1 de febrero, Intel daba un nuevo vuelco a la industria con la aparición de los primeros 80286. Como principal novedad, cabe destacar el hecho de que por fin se podía utilizar la denominada memoria virtual, que en el caso del 286 podía llegar hasta 1 Giga. También hay que contar con el hecho de que el tiempo pasado había permitido a los ingenieros de Intel investigar más a fondo en este campo, movidos sin duda por el gran éxito de ventas de los anteriores micros. Ello se tradujo en un bus de 16 bits, 134000 transistores usando una tecnología de 1.5 micras, un máximo de memoria direccionable de 16 Megas y unas velocidades de reloj de 8, 10 y 12 MHz. En términos de rendimiento, podíamos decir que se había multiplicado entre tres y seis veces la capacidad del 8086, y suponía el primer ordenador que no fabricaba IBM en exclusiva, sino que otras muchas compañías, alentadas por los éxitos del pasado, se decidieron a crear sus propias máquinas. Como dato curioso, baste mencionar el hecho de que en torno a los seis años que se le concede de vida útil, hay una estimación que apunta a que se colocaron en torno a los 15 millones de ordenadores en todo el mundo. Microsoft también juega El año de 1985 es clave en la historia de los procesadores. El 17 de octubre Intel anunciaba la aparición del procesador 80386DX, el primero en poseer una arquitectura de 32 bits, lo que suponía una velocidad a la hora de procesar las instrucciones realmente importante con respecto a su antecesor. Dicho procesador contenía en su interior en torno a los 275000 transistores, más de 100 veces los que tenía el primer 4004 después de tan sólo 14 años. El reloj llegaba ya hasta un máximo de 33 MHz, y era capaz de direccionar 4 Gigas de memoria, tamaño que todavía no se ha superado por otro procesador de Intel dedicado al mercado doméstico. En 1988, Intel desarrollaba un poco tarde un sistema sencillo de actualizar los antiguos 286 gracias a la aparición del 80386SX, que sacrificaba el bus de datos para dejarlo en uno de 16 bits, pero a menor coste. Estos procesadores irrumpieron con la explosión del entorno gráfico Windows, desarrollado por Microsoft unos años antes, pero que no había tenido la suficiente aceptación por parte de los usuarios. También había habido algunos entornos que no habían funcionado mal del todo, como por ejemplo el Gem 3, pero no es hasta este momento cuando este tipo de entornos de trabajo se popularizan, facilitando la tarea de enfrentarse a un ordenador, que por aquel entonces sólo conocíamos unos pocos. Windows vino a ser un soplo de aire fresco para la industria, pues permitió que personas de cualquier condición pudiera manejar un ordenador con unos requerimientos mínimos de informática.

Y si esto parecía la revolución, no tuvimos que esperar mucho para que el 10 de abril de 1989 apareciera el Intel 80486DX, de nuevo con tecnología de 32 bits y como novedades principales, la incorporación del caché de nivel 1 (L1) en el propio chip, lo que aceleraba enormemente la transferencia de datos de este caché al procesador, así como la aparición del co-procesador matemático, también integrado en el procesador, dejando por tanto de ser una opción como lo era en los anteriores 80386. Dos cambios que unido al hecho de que por primera vez se sobrepasaban el millón de transistores usando la tecnología de una micra (aunque en la versión de este procesador que iba a 50 MHz se usó ya la tecnología .8 micras), hacía posible la aparición de programas de calidad sorprendente, entre los que los juegos ocupan un lugar destacado.

Se había pasado de unos ordenadores en los que prácticamente cualquier tarea compleja requería del intérprete de comandos de MS-DOS para poder ser realizada, a otros en los que con mover el cursor y pinchar en la opción deseada simplificaba en buena medida las tareas más comunes. Por su parte, Intel volvió a realizar, por última vez hasta el momento, una versión de este procesador dos años después. Se trataba del 80486SX, idéntico a su hermano mayor salvo que no disponía del famoso co-procesador matemático incorporado, lo que suponía una reducción del coste para aquellas personas que desearan introducirse en el segmento sin necesidad de pagar una suma elevada. Llega el Pentium Sin embargo, Intel no se quedó contemplando la gran obra que había creado, y rápidamente anunció que en breve estaría en la calle una nueva gama de procesadores que multiplicaría de forma general por cinco los rendimientos medios de los 80486. Se trataba de los Pentium, conocidos por P5 en el mundillo de la informática mientras se estaban desarrollando, y de los que la prensa de medio mundo auguraba un gran futuro, tal y como así ha sido. Estos procesadores pasarán a la historia por ser los primeros a los que Intel no los bautizó con un número, y sí con una palabra. Esto era debido a que otras compañías dedicadas a la producción de procesadores estaban utilizando los mismos nombres puesto que no se podía registrar una cadena de ellos como marca, y por lo tanto, eran de dominio público. De modo que a Intel no le quedó más remedio que ponerle una palabra a su familia de procesadores, que además, con el paso del tiempo, se popularizó en los Estados Unidos de tal forma, que era identificada con velocidad y potencia en numerosos cómics y programas de televisión. Estos procesadores que partían de una velocidad inicial de 60 MHz, han llegado hasta los 200 MHz, algo que nadie había sido capaz de augurar unos años antes.

Con una arquitectura real de 32 bits, se usaba de nuevo la tecnología de .8 micras, con lo que se lograba realizar más unidades en menos espacio (ver recuadro explicativo). Los resultados no se hicieron esperar, y las compañías empezaron aunque de forma tímida a lanzar programas y juegos exclusivamente para el Pentium, hasta el punto que en este momento quien no posea un procesador de este tipo, está seriamente atrasado y no puede trabajar con garantías con los programas que actualmente hay en el mercado. Algo que ha venido a demostrar la aparición del nuevo sistema operativo de Microsoft Windows 95, que aunque funciona en equipos dotados de un procesador 486, lo hace sin sacar el máximo partido de sus funciones. Pentium Pro y Pentium II La aparición, el 27 de marzo de 1995, del procesador Pentium Pro supuso para los servidores de red y las estaciones de trabajo un aire nuevo, tal y como ocurriera con el Pentium en el ámbito doméstico. La potencia de este nuevo procesador no tenía comparación hasta entonces, gracias a la arquitectura de 64 bits y el empleo de una tecnología revolucionaria como es la de .32 micras, lo que permitía la inclusión de cinco millones y medio de transistores en su interior. El procesador contaba con un segundo chip en el mismo encapsulado, que se encargaba de mejorar la velocidad de la memoria caché, lo que resultaba en un incremento del rendimiento sustancioso. Las frecuencias de reloj se mantenían como límite por arriba en 200 MHz, partiendo de un mínimo de 150 MHz. Un procesador que en principio no tiene muchos visos de saltar al mercado doméstico, puesto que los procesadores Pentium MMX parecen cubrir de momento todas las necesidades en este campo. No podemos asegurar que en un futuro cercano esto no acabe ocurriendo, pues en el mundo de la informática han sucedido las cosas más extrañas, y nunca se sabe por dónde puede tirar un mercado en constante evolución.

Una evolución que demostró Intel hace muy poco con un nuevo procesador, denominado Pentium II, que viene a ser simplemente un nuevo ingenio que suma las tecnologías del Pentium Pro con el MMX. Como resultado, el Pentium II es el procesador más rápido de cuantos ha comercializado Intel. Por el momento únicamente se dispone de las versiones a 233 y 266 MHz, pero después de este verano podremos disfrutar de la versión de 300 MHz, que supondrá un nuevo récord de velocidad de reloj. El Pentium II, cuyas características fueron tratadas con detalle en el artículo de portada del pasado mes de la revista, es hoy (por poco tiempo) el extremo de la cadena evolutiva de Intel. El futuro de los microprocesadores La evolución que están sufriendo los procesadores es algo que no parece escapar a la atención de millones de personas, cuyo trabajo depende de hasta dónde sean capaces de llegar los ingenieros de Intel a la hora de desarrollar nuevos chips. El último paso conocido ha sido la implementación de la nueva arquitectura de 0.25 micras, que viene a sustituir de forma rotunda la empleada hasta el momento, de 0.35 micras en los últimos modelos de procesador. Esto va a significar varias cosas en un futuro no muy lejano. Para empezar, la velocidad se incrementará una media del 33 por ciento con respecto a la generación de anterior. Es decir, el mismo procesador usando esta nueva tecnología puede ir un 33 por ciento más rápido que el anterior. Para que os podáis hacer una idea del tamaño de esta tecnología, deciros que el valor de 0.25 micras es unas 400 veces más pequeño que un pelo de cualquier persona. Y este tamaño es el que tienen los transistores que componen el procesador. El transistor, como muchos sabréis, permite el paso de la corriente eléctrica, de modo que en función de en qué transistores haya corriente, el ordenador realiza las cosas (esto es una simplificación de la realidad, pero se ajusta a ella más o menos). Dicha corriente eléctrica circula entre dos puntos, de modo que cuanto menor sea esta distancia, más cantidad de veces podrá pasar pues el tiempo de paso es menor.

Aunque estamos hablando de millonésimas de segundo, tened en cuenta que un procesador está trabajando continuamente, de modo que ese tiempo que parece insignificante cuando es sumado a lo largo de las miles de millones de instrucciones que realizar, nos puede dar una cantidad de tiempo bastante importante. De modo que la tecnología que se utilice puede dar resultados totalmente distintos incluso utilizando el mismo procesador. Por el momento, en un futuro cercano además de contar con la arquitectura de 0.25 micras, podremos disfrutar de duna de 0.07 para el año 2011, lo que supondrá la introducción en el procesador de mil millones de transistores y alcanzando una velocidad de reloj cercana a los 10000 MHz, es decir, 10 GHz.

La tecnología MMX Aunque no podamos considerar la tecnología MMX como un procesador en sí mismo, sería injusto no hablar de ella en un informe como éste. Es uno de los mayores pasos que ha dado Intel en la presente década, y según ellos mismos, todos los procesadores que fabriquen a partir de mediados del próximo año llevarán incorporada esta arquitectura. Para su desarrollo se analizaron un amplio rango de programas para determinar el funcionamiento de diferentes tareas: algoritmos de descompresión de vídeo, audio o gráficos, formas de reconocimiento del habla o proceso de imágenes, etc. El análisis dio como resultado que numerosos algoritmos usaban ciclos repetitivos que ocupaban menos del 10% del código del programa, pero que en la práctica suponían el 90% del tiempo de ejecución. De modo que nació la tecnología MMX, compuesta por 57 instrucciones y 4 tipos de datos nuevos, que se encargan de realizar esos trabajos cíclicos consumiendo mucho menos tiempo de ejecución. Antes, para manipular 8 bytes de datos gráficos requería 8 repeticiones de la misma instrucción; ahora, con la nueva tecnología, se puede utilizar una única instrucción aplicada a los 8 bytes simultáneamente, obteniendo de este modo un incremento del rendimiento de 8x.

jueves, 13 de noviembre de 2008

Data Mining

Data Mining, la extracción de información oculta y predecible de grandes bases de datos, es una poderosa tecnología nueva con gran potencial para ayudar a las compañías a concentrarse en la información más importante de sus Bases de Información. Las herramientas de Data Mining predicen futuras tendencias y comportamientos, permitiendo en los negocios tomar decisiones proactivas y conducidas por un conocimiento acabado de la información. Los análisis prospectivos automatizados ofrecidos por un producto así van más allá de los eventos pasados provistos por herramientas retrospectivas típicas de sistemas de soporte de decisión. Las herramientas de Data Mining pueden responder a preguntas de negocios que tradicionalmente consumen demasiado tiempo para poder ser resueltas y a los cuales los usuarios de esta información casi no están dispuestos a aceptar. Estas herramientas exploran las bases de datos en busca de patrones ocultos, encontrando información predecible que un experto no puede llegar a encontrar porque se encuentra fuera de sus expectativas.
Muchas compañías ya colectan y refinan cantidades masivas de datos. Las técnicas de Data Mining pueden ser implementadas rápidamente en plataformas ya existentes de software y hardware para acrecentar el valor de las fuentes de información existentes y pueden ser integradas con nuevos productos y sistemas pues son traídas en línea. Una vez que las herramientas de Data Mining fueron implementadas en computadoras cliente servidor de alta performance o de procesamiento paralelo, pueden analizar bases de datos masivas para brindar respuesta a preguntas tales como, "¿Cuáles clientes tienen más probabilidad de responder al próximo mailing promocional, y por qué? y presentar los resultados en formas de tablas, con gráficos, reportes, texto, hipertexto, etc.
Los Fundamentos del Data Mining
Las técnicas de Data Mining son el resultado de un largo proceso de investigación y desarrollo de productos. Esta evolución comenzó cuando los datos de negocios fueron almacenados por primera vez en computadoras, y continuó con mejoras en el acceso a los datos, y más recientemente con tecnologías generadas para permitir a los usuarios navegar a través de los datos en tiempo real. Data Mining toma este proceso de evolución más allá del acceso y navegación retrospectiva de los datos, hacia la entrega de información prospectiva y proactiva. Data Mining está listo para su aplicación en la comunidad de negocios porque está soportado por tres tecnologías que ya están suficientemente maduras: Recolección masiva de datos Potentes computadoras con multiprocesadores Algoritmos de Data Mining MCI Telecomunicaciones Corp. cuenta con una base de datos de 3 terabytes + 1 terabyte de índices y overhead corriendo en MVS sobre IBM SP2. La necesidad paralela de motores computacionales mejorados puede ahora alcanzarse de forma más costo - efectiva con tecnología de computadoras con multiprocesamiento paralelo. Los algoritmos de Data Mining utilizan técnicas que han existido por lo menos desde hace 10 años, pero que sólo han sido implementadas recientemente como herramientas maduras, confiables, entendibles que consistentemente son más per formantes que métodos estadísticos clásicos. En la evolución desde los datos de negocios a información de negocios, cada nuevo paso se basa en el previo. Por ejemplo, el acceso a datos dinámicos es crítico para las aplicaciones de navegación de datos (drill through applications), y la habilidad para almacenar grandes bases de datos es crítica para Data Mining. Los componentes esenciales de la tecnología de Data Mining han estado bajo desarrollo por décadas, en áreas de investigación como estadísticas, inteligencia artificial y aprendizaje de máquinas. Hoy, la madurez de estas técnicas, junto con los motores de bases de datos relacionales de alta performance, hicieron que estas tecnologías fueran prácticas para los entornos de data warehouse actuales. El Alcance de Data Mining El nombre de Data Mining deriva de las similitudes entre buscar valiosa información de negocios en grandes bases de datos - por ej.: encontrar información de la venta de un producto entre grandes montos de Gigabytes almacenados - y minar una montaña para encontrar una veta de metales valiosos. Ambos procesos requieren examinar una inmensa cantidad de material, o investigar inteligentemente hasta encontrar exactamente donde residen los valores. Dadas bases de datos de suficiente tamaño y calidad, la tecnología de Data Mining puede generar nuevas oportunidades de negocios al proveer estas capacidades: Predicción automatizada de tendencias y comportamientos. Data Mining automatiza el proceso de encontrar información predecible en grandes bases de datos. Preguntas que tradicionalmente requerían un intenso análisis manual, ahora pueden ser contestadas directa y rápidamente desde los datos. Un típico ejemplo de problema predecible es el marketing apuntado a objetivos. Mining usa datos en mailing promocionales anteriores para identificar posibles objetivos para maximizar los resultados de la inversión en futuros mailing. Otros problemas predecibles incluyen pronósticos de problemas financieros futuros y otras formas de incumplimiento, e identificar segmentos de población que probablemente respondan similarmente a eventos dados. Descubrimiento automatizado de modelos previamente desconocidos. Las herramientas de Data Mining barren las bases de datos e identifican modelos previamente escondidos en un sólo paso. Otros problemas de descubrimiento de modelos incluye detectar transacciones fraudulentas de tarjetas de créditos e identificar datos anormales que pueden representar errores de tipeado en la carga de datos.
Las técnicas de Data Mining pueden redituar los beneficios de automatización en las plataformas de hardware y software existentes y puede ser implementadas en sistemas nuevos a medida que las plataformas existentes se actualicen y nuevos productos sean desarrollados. Cuando las herramientas de Data Mining son implementadas en sistemas de procesamiento paralelo de alta performance, pueden analizar bases de datos masivas en minutos. Procesamiento más rápido significa que los usuarios pueden automáticamente experimentar con más modelos para entender datos complejos. Alta velocidad hace que sea práctico para los usuarios analizar inmensas cantidades de datos. Grandes bases de datos, a su vez, producen mejores predicciones. Las bases de datos pueden ser grandes tanto en profundidad como en ancho: Más columnas. Los analistas muchas veces deben limitar el número de variables a examinar cuando realizan análisis manuales debido a limitaciones de tiempo. Sin embargo, variables que son descartadas porque parecen sin importancia pueden proveer información acerca de modelos desconocidos. Un Data Mining de alto rendimiento permite a los usuarios explorar toda la base de datos, sin preseleccionar un subconjunto de variables.
Más filas. Muestras mayores producen menos errores de estimación y desvíos, y permite a los usuarios hacer inferencias acerca de pequeños pero importantes segmentos de población. Las técnicas más comúnmente usadas en Data Mining son: Redes neuronales artificiales: modelos predecibles no-lineales que aprenden a través del entrenamiento y semejan la estructura de una red neuronal biológica.
Arboles de decisión: estructuras de forma de árbol que representan conjuntos de decisiones. Estas decisiones generan reglas para la clasificación de un conjunto de datos. Métodos específicos de árboles de decisión incluyen Arboles de Clasificación y Regresión (CART: Classification And Regression Tree) y Detección de Interacción Automática de Chi Cuadrado (CHAI: Chi Square Automatic Interaction Detection)
Algoritmos genéticos: técnicas de optimización que usan procesos tales como combinaciones genéticas, mutaciones y selección natural en un diseño basado en los conceptos de evolución. Método del vecino más cercano: una técnica que clasifica cada registro en un conjunto de datos basado en una combinación de las clases del/de los k registro (s) más similar/es a él en un conjunto de datos históricos (donde k 1). Algunas veces se³ llama la técnica del vecino k-más cercano. Regla de inducción: la extracción de reglas if-then de datos basados en significado estadístico. Muchas de estas tecnologías han estado en uso por más de una década en herramientas de análisis especializadas que trabajan con volúmenes de datos relativamente pequeños. Estas capacidades están ahora evolucionando para integrarse directamente con herramientas OLAP y de Data Warehousing.
¿Cómo Trabaja el Data Mining? ¿Cuán exactamente es capaz Data Mining de decirle cosas importantes que usted desconoce o que van a pasar? La técnica usada para realizar estas hazañas en Data Mining se llama Modelado. Modelado es simplemente el acto de construir un modelo en una situación donde usted conoce la respuesta y luego la aplica en otra situación de la cual desconoce la respuesta. Por ejemplo, si busca un galeón español hundido en los mares lo primero que podría hacer es investigar otros tesoros españoles que ya fueron encontrados en el pasado. Notaría que esos barcos frecuentemente fueron encontrados fuera de las costas de Bermuda y que hay ciertas características respecto de las corrientes oceánicas y ciertas rutas que probablemente tomara el capitán del barco en esa época. Usted nota esas similitudes y arma un modelo que incluye las características comunes a todos los sitios de estos tesoros hundidos. Con estos modelos en mano sale a buscar el tesoro donde el modelo indica que en el pasado hubo más probabilidad de darse una situación similar. Con un poco de esperanza, si tiene un buen modelo, probablemente encontrará el tesoro.
Este acto de construcción de un modelo es algo que la gente ha estado haciendo desde hace mucho tiempo, seguramente desde antes del auge de las computadoras y de la tecnología de Data Mining. Lo que ocurre en las computadoras, no es muy diferente de la manera en que la gente construye modelos. Las computadoras son cargadas con mucha información acerca de una variedad de situaciones donde una respuesta es conocida y luego el software de Data Mining en la computadora debe correr a través de los datos y distinguir las características de los datos que llevarán al modelo. Una vez que el modelo se construyó, puede ser usado en situaciones similares donde usted no conoce la respuesta.
Si alguien le dice que tiene un modelo que puede predecir el uso de los clientes, ¿Cómo puede saber si es realmente un buen modelo? La primera cosa que puede probar es pedirle que aplique el modelo a su base de clientes - donde usted ya conoce la respuesta. Con Data Mining, la mejor manera para realizar esto es dejando de lado ciertos datos para aislarlos del proceso de Data Mining. Una vez que el proceso está completo, los resultados pueden ser testeados contra los datos excluidos para confirmar la validez del modelo. Si el modelo funciona, las observaciones deben mantenerse para los datos excluidos.
Una arquitectura para Data Mining Para aplicar mejor estas técnicas avanzadas, éstas deben estar totalmente integradas con el data warehouse así como con herramientas flexibles e interactivas para el análisis de negocios. Varias herramientas de Data Mining actualmente operan fuera del warehouse, requiriendo pasos extra para extraer, importar y analizar los datos. Además, cuando nuevos conceptos requieren implementación operacional, la integración con el warehouse simplifica la aplicación de los resultados desde Data Mining. El Data warehouse analítico resultante puede ser aplicado para mejorar procesos de negocios en toda la organización, en áreas tales como manejo de campañas promocionales, detección de fraudes, lanzamiento de nuevos productos, etc. El punto de inicio ideal es un data warehouse que contenga una combinación de datos de seguimiento interno de todos los clientes junto con datos externos de mercado acerca de la actividad de los competidores. Información histórica sobre potenciales clientes también provee una excelente base para prospecting. Este warehouse puede ser implementado en una variedad de sistemas de bases relacionales y debe ser optimizado para un acceso a los datos flexible y rápido. Un server multidimensional OLAP permite que un modelo de negocios más sofisticado pueda ser aplicado cuando se navega por el data warehouse. Las estructuras multidimensionales permiten que el usuario analice los datos de acuerdo a como quiera mirar el negocio - resumido por línea de producto, u otras perspectivas claves para su negocio. El server de Data Mining debe estar integrado con el data warehouse y el server OLAP para insertar el análisis de negocios directamente en esta infraestructura. Un avanzado, metadata centrado en procesos define los objetivos del Data Mining para resultados específicos tales como manejos de campaña, prospecting, y optimización de promociones. La integración con el data warehouse permite que decisiones operacionales sean implementadas directamente y monitoreadas. A medida que el data warehouse crece con nuevas decisiones y resultados, la organización puede "minar" las mejores prácticas y aplicarlas en futuras decisiones.
Este diseño representa una transferencia fundamental desde los sistemas de soporte de decisión convencionales. Más que simplemente proveer datos a los usuarios finales a través de software de consultas y reportes, el server de Análisis Avanzado aplica los modelos de negocios del usuario directamente al warehouse y devuelve un análisis proactivo de la información más relevante. Estos resultados mejoran los metadatos en el server OLAP proveyendo un estrato de metadatos que representa una vista fraccionada de los datos. Generadores de reportes, visualizadores y otras herramientas de análisis pueden ser aplicadas para planificar futuras acciones y confirmar el impacto de esos planes. Aplicaciones de DATAMINIG En la actualidad, existe una gran cantidad de aplicaciones, en áreas tales como: * Astronomía: clasificación de cuerpos celestes. *aspectos climatológicos: predicción de tormentas, etc. * Medicina: caracterización y predicción de enfermedades, probabilidad de respuesta satisfactoria a tratamiento médico. * Industria y manufactura: diagnóstico de fallas. * Mercadotécnica: identificar clientes susceptibles de responder a ofertas de productos y servicios por correo, fidelidad de clientes, selección de sitios de tiendas, afinidad de productos, etc. * Inversión en casas de bolsa y banca: análisis de clientes, aprobación de préstamos, determinación de montos de crédito, etc. * Detección de fraudes y comportamientos inusuales: telefónicos, seguros, en tarjetas de crédito, de evasión fiscal, electricidad, etc. * Análisis de canastas de mercado para mejorar la organización de tiendas, segmentación de mercado (clustering) * Determinación de niveles de audiencia de programas televisivos * Normalización automática de bases de datos GUIAS DE APOYO. http://www.anderson.ucla.edu/ http://www.ba.unibo.it/ http://www.kdnuggets.com/ http://www.oracle.com/ http://www.monografias.com/

Inteligencia de Negocios

Dentro de las empresas la información en sus archivos y sistemas es importante, pero ¿Qué pasa cuando no sabemos que hacer con toda esa información? .La solución: La inteligencia de Negocios, ya que esta nos permite dar pronósticos, crear escenarios y sobre todo, nos da la flexibilidad de tomar decisiones, todo esto con una simple clave, la información. La Inteligencia de Negocios o Business Intelligence (BI), es tan vasta que la podemos aplicar a todas las partes de una empresa, desde finanzas, ventas o marketing, siendo esta una razón por la cual se prevé que será una necesidad de toda empresa.
Definición de BI (Business Intelligence): Se refiere al uso de los datos de una empresa para facilitar la toma de decisiones a las personas que deciden, es decir, la comprensión del funcionamiento actual y la anticipación de acciones para dar una dirección bien informada a la empresa.
Las herramientas de inteligencia se basan en la utilización de un sistema de información de inteligencia que se forma con distintos datos extraídos de los datos de producción, con información relacionada con la empresa o sus ámbitos y con datos económicos.
Mediante las herramientas y técnicas ETL (extraer, transformar y cargar) se extraen los datos de distintas fuentes, se depuran y preparan (homogeneización de los datos) y cargarlos en un almacén de datos.
Por último, las herramientas de inteligencia analítica posibilitan el modelado de las representaciones en base a consultas para crear tablas de bordes; esto se conoce como presentación de informes.
¿Qué puede hacer la inteligencia de negocios por tu empresa? Como lo vimos en la definición anterior, con las técnicas ETL es prácticamente todo posible, pues adapta un sistema el cual nos da las soluciones necesarias para cada empresa teniendo entre ellas las siguientes: *Generar reportes globales o por secciones. *Crear una base de datos de clientes. *Crear escenarios con respecto a una decisión. *Hacer pronósticos de ventas y devoluciones. *Compartir información entre departamentos. *Análisis multidimensionales. *Generar y procesar datos. *Cambiar la estructura de toma de decisiones.
Una razón todavía mayor, es que te da la ventaja de juntar tecnología con humanos para resolver problemas, lo cual gana terreno sobre los competidores de la propia empresa. Los problemas más grandes y significativos son lo que se encuentran dentro de las siguientes áreas.
- Ventas: Análisis de ventas; Detección de clientes importantes; Análisis de productos, líneas, mercados; Pronósticos y proyecciones.
- Marketing: Segmentación y análisis de clientes; Seguimiento a nuevos productos.
- Finanzas: Análisis de gastos; Rotación de cartera; Razones Financieras.
- Manufactura: Productividad en líneas; Análisis de desperdicios; Análisis de calidad; Rotación de inventarios y partes críticas.
- Embarques: Seguimiento de embarques; Motivos por los cuales se pierden pedidos. ¿Pero cómo hacer que los negocios pueden crear inteligencia de sus datos? Proveer oportunamente y acertadamente acceso a esa información para sus usuarios finales. Para entender esto vamos a describir brevemente el proceso de BI. Este proceso es dinámico e iterativo. El proceso empieza con preguntas, y las respuestas son resultadas de más preguntas o de subsecuentes interacciones del proceso.
Fase 1 - Dirigir y Planear: Esta fase es el principio y el fin del proceso. Es el principio por que involucra redactar los requerimientos específicos. Y es el final porque contesta preguntas que guían a otras nuevas. El proceso de BI empieza con los usuarios (Ejecutivos, Directivos, Líderes de Negocio etc.) y aquí se generan las preguntas que les va ayudar a ellos a alcanzar sus objetivos. Ejemplos de esas preguntas son: ¿Cuales son los clientes más rentables? ¿Cuál es el margen de cada línea de producto? Fase 2 - Recolección de Información: El proceso de recolección de información es cuando las diferentes fuentes son analizadas para determinar los datos necesarios para encontrar las respuestas a las preguntas.
Fase 3 - Procesamientos de Datos: Esta fase es la integración de datos en crudo a un formato utilizable para el análisis. Esto puede ser posible, creando una nueva base de datos, agregar datos a bases de datos existente o consolidando información. Esta fase generalmente es vista como Extracción, Transformación y Carga que ocurren en los ambientes de BI.
Fase 4- Análisis y Producción: El grupo de análisis de negocios utiliza herramientas y técnicas para ordenar sobre los datos y crear inteligencia. El resultado final es la producción de respuestas “inteligentes”, en un contexto propio. En algunos casos es un proceso simple como la creación de un reporte. En otros casos, son la creación de indicadores. Tal vez en esta fase, sean generados requerimientos adicionales pues los analistas puede que encuentren nuevas preguntas que necesiten ser contestadas.
Fase 5- Difusión: Esta fase de difusión, es entregar productos inteligentes a los diversos clientes que lo requieren. Esto básicamente implica el uso de herramientas BI para la publicación de “tableros de indicadores”, reportes o la posibilidad de tener herramientas de fácil uso para que los mismos usuarios tengan la capacidad de revisar los datos de manera rápida y sencilla.
El siguiente esquema muestra las fases en las cuales se pueden resolver los problemas de una empresa mediante la BI.
Inteligencia de Negocios hacia el Futuro El mundo está cambiando, si queremos o no. Los ordenadores son cada vez más rápidos, como son los coches, los aviones, y casi todo lo demás en este mundo. El género humano es la aceleración de sus clientes quieren más por su dinero, y ellos quieren que lo más rápido que nunca. Inteligencia empresarial puede ayudar a predecir las tendencias de la base de clientes, ya que incluso cambio, más rápidamente y más rápidamente cada día. Inteligencia empresarial está cambiando en sí como un proceso y una ideología para que se ajusten a la más rápida, más exigentes rigores de la economía moderna y de futuro.
La tecnología utilizada como herramienta, nos proporciona cada vez mas un mecanismo el cual nos da solución a nuestros problemas, la Inteligencia de Negocios no es la excepción, hoy en día, el ámbito de negocios cuenta con una gran variedad de software para dicha aplicación, teniendo en cuenta los siguientes: SAGENT SOLUTION PLATTFORM: Este sistema integrado extrae, transforma, mueve, distribuye y presenta la información clave para la toma de decisiones en la empresa en un entorno homogéneo.
BUSINESS OBJECTS: Suministra a los usuarios el poder acceder de forma sencilla a los datos, analizar la información almacenada y creación de informes.
ORACLE9I APPLICATION SERVER: Permite acceder, analizar y compartir la información y tomar decisiones precisas, basadas en datos en forma rápida.
MICROSTRATEGY: Provee soluciones a clientes de cualquier industria y/o área funcional con el fin de ayudarlos en la obtención de un mayor conocimiento sobre la información manejada en su empresa.
CONCLUSION El ambiente del mundo de los negocios de hoy exige una aplicación cada vez más eficiente de la información disponible, dado todo por la correcta utilización de la información dentro y fuera de la empresa, pues pone a los usuarios la información correcta en el lugar correcto. Son múltiples los beneficios que ofrece a las empresas, entre ellos se encuentra la generación de una ventaja competitiva.
Cómo se puede ser exitoso utilizando BI. Primeramente las compañías necesitan enfocarse en las alineaciones de los negocios, asegurar que los esfuerzos de BI están alineados con los objetivos de la empresa. Los analistas de negocios deben asegurarse de que entienden los requerimientos de los usuarios y además que estos requerimientos están alineados también a los objetivos del negocio. Deben de enfocarse en proveer respuestas a las preguntas de los usuarios antes que nada. Bibliografía: http://www.articulosinformativos.com.mx/Inteligencia_de_Negocios-a854251.html http://www.gestiopolis.com/canales2/gerencia/1/busint.htm http://es.wikipedia.org/wiki/BI_(inform%C3%A1tica)